IR R RN TR

1
*
Su
=
o
= =
o
£
(7))
—
=
o
<=
=
15
w
wd
w
-
1]
4
o
o
o

JWNTOA ELORENVE]




Pocket Electronic Symphony #1
Andreja Andric

for a solo performer with smartphone

Performing score,
JavaScript source code
& documentation






Pocket Electronic Symphony #1

// Code Comments

/* This script consists of a list of variables and
of program code. The list of variables starts here.
The three variables and the function next() form
the linear congruent random number generator that
the program uses to make micro-decisions while it
generates the sound file =/

/* During the development of the sound, certain
changes take place, but not at every byte,

because that would be too fast to follow. T is the
value of a basic time interval

(measured in bytes of the sound flow) in which
mostly any change can happen. T equals

882 bytes, which equals 1/400 s at the rate of 44100
frames per second per stereo channel */

/+* D is the current sound density, or how many
individual notes the cluster currently

contains. V indicates volume of each individual
sound in the current cluster, measured

in units of scale that constitute 16-bit sound, in
other words, in units inside the interval

between -32768 and 32767 x/

/* Each event has its toggle that turns it on and
off, as explained above.

Each one has also its own timer and time interval
measured in units of T above, in which it may

<script>
var a = 2300446;
var b = 1531103;
var ¢ = 2309401;

function next() {
a = (a * b % Number .MAX_SAFE_INTEGER + c)
>>Number .MAX_SAFE_INTEGER;

if (a < 0) a = -a; return a;
}
var T = 882;
var D = 11;
var V = 1888;

var STATES = 15;

%



Pocket Electronic Symphony #1

appear. STATES is the overall number of toggles, and
corresponing events and time intervals, which is
constant and equals 15.

i is the counter of bytes in the sound signal (the
sound is 16bit stereo 44100frames/s).

tx is the counter of time expressed in time measured
in intervals of T (1/400s) */

/* TTMIN and TTMAX respectively stand for minimum and
maximum values between which the 15 intervals TT[]
(explained below) will always find themselves. These
maximum and minimum time values are not constant but
change when Toggle 4 is active.

TT[] contains 15 periods (counting in counts of T’s
above) in which other changes take place, as already
explained.

ST[] contains 15 states that change according to the
TT time intervals and which, when set to 1, indicate
that the corresponding event will take place. These
states trigger changes to the sound flow which happen
at intervals, as ST is 1 only during one sample.
SST[] contains 15 states that keep the value of 1

or 0 during the whole interval. These states trigger
continuous kind of change which happen at every
frame, while these states are at value 1.

Slide is the amount of gradual pitch shift of a
cluster (the change in pitch that goes in a single
direction).

limit[] contains highest and lowest limits for V (see
the previous set of cluster generation variables).

A contains smallest interval that participates in
building a cluster and at the same time the amount of
random change in pitch that go in opposite directions.

var i = 0;

var tx = 0;

var TTMIN = 100;
var TTMAX = 200;
var TT = [1;
for (j = 0; j < STATES; j++)
TT[j] = TTMIN + next() / 103 % (TTMAX - TTMIN);

var ST = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0];

var SST = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0];

var slide = 0;
var limit = [24000, 30000];
var A = 1;



Pocket Electronic Symphony #1

DMAX states maximum cluster density (set to 60).
Part is a variable whose binary representation
contains the state of all the toggles and therefore
is used to control the flow of the composition.
Only those changes where corresponding bit in Part
variable is 1 will happen, and, since there are 15
toggles, only lowest 15 bits count. For instance if
Part = 129, (000000010000001 in binary representation)
then only changes of type 0 and 7, corresponding to
toggles 1 and 8, will take place.

IncreaseTime is an additional toggle that decides
whether time intervals are increased or decreased
all together on successive pushes of Toggle 6. The
corresponding toggle changes to light blue or dark
blue to indicate the difference. All other toggles
change to dark blue only when active, and back to
standard grey color when inactive. Toggle 6 is the
only 3-state toggle =/

var DMAX
var part

60;

1]
(S

var IncreaseTime

true;



Pocket Electronic Symphony #1

/* In this section we assign a listener function to
each toggle, so that variable part, described above,
is modified accordingly with each press of each
button. As mentioned above, Toggle 6 is the only
3-state toggle, while all the others are two state
togles.

A1l toggles change color between dark blue (active)
and light grey (inactive), except the toggle 6 which
also has a third color (light blue) =/

var btnToggle = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0];

for(cc=0;cc<STATES;cc++) {
btnToggle[ccl=document.
>>getElementById(‘btnToggle’+cc);
let clist = btnToggle[cc].classlList;

if (cc == 5) {

(function(index) {
btnToggle[index].addEventListener(
>>“click”, function() {

part = part * 32,
if (part & 32) {

IncreaseTime = !IncreaseTime;
if (IncreaseTime) {
clist.

>>remove( ‘darkblueButtonStyle’);
clist.add(‘blueButtonStyle’);

} else {
clist.remove(‘blueButtonStyle’);
clist.add(‘darkblueButtonStyle’);

}

} else {
clist.remove(‘blueButtonStyle’);
clist.remove(‘darkblueButtonStyle’);

3
resetChangeTriggers();
}, false);
1 (ce);

} else {

(function(index) {
btnToggle[index].addEventListener(
>>“click”, function() {

var expon;



Pocket Electronic Symphony #1

/% Variables v[] and f[] define the individual
components of the sound cluster. f[]’'s contain current
increments of amplitudes of individual components.
The faster an amplitude grows the more often it
completes a cycle of changes between the highest

and lowest amplitude limits, and therefore it is a
measure of pitch. v[]'s are the current values of the
amplitudes of individual components. The scale and
effective pitch actually depends also on V, because
the smaller the V, the faster an amplitude completes
its cycle, so in a way, the triad f[] and V define a
bidimensional musical scale in which all the voices
of the cluster move.

(index == @) ? expon = 1 : expon =

>>Math.pow(2, index);

part = part * expon;

if (part & expon)
clist.add(‘toggleButtonStyle’);

else
clist.remove(‘toggleButtonStyle’);

resetChangeTriggers();

}, false);

})(co);

function resetChangeTriggers() {
for (j = 0; j < STATES; j++) {
STCj1 = @; SST[j] = o;

var f = [1;
var v = [1;

f[0] = 3 + next() / 77 % 9;
for (j = 1; j < DMAX; j++)
fL31 = fI3 - 11+ A;
for (j = 0; j < DMAX; j++)

v[jl = 0;



Pocket Electronic Symphony #1

Saw indicates the amount of voices with saw-like
envelope. Saw=1 indicates that 1/10th of all voices
in the cluster will have saw-like envelope. Saw=5
indicates that 1/2 have saw-like envelope whereas
the others have flat envelope. Saw=10 indicates that
all voices have saw-like envelope. Saw=0 indicates
that all voices have flate envelope. Regulating the
value of Saw variable is effected by means of Toggles
13, 14 and 15 =/

/* Variables aCtx, jsProcessor and gainNode,

and function createAudioContext() are used for
communicating with the sound card via Web Audio API.
bufferSize is a constant that indicates the amount

of data the sound card will receive at every cycle.
leftBuffer and rightBuffer are memory buffers where
the sound data will be stored for the sound card to
play in each cycle. isPlaying and controlsOn are both
toggles that are either true or false. isPlaying is
used to control audio playback and controlsOn is used
to switch between control interface and help screen.
Function initAudio() makes necessary initializations
for real time audio and sets copyBuffer() as the
callback function that the sound card will call at
regular intervals to fetch the data inside leftBuffer
and rightBuffer.

initAudio() will be the first thing to do when the
page loads */

11

var Saw = 0;

fun

var
var
var
var
var
var
var
var

ction createAudioContext() {

var contextClass = (window.AudioContext ||
window.webkitAudioContext ||
window.mozAudioContext ||
window.oAudioContext);

if (contextClass) {
return new contextClass();

} else {
alert(“Sorry. WebAudio API not supported. Try
>>using Google Chrome or Safari browser.”);
return null;

aCtx = createAudioContext();
jsProcessor = 0;

gainNode;

bufferSize = 16384;

leftBuffer = new Array(bufferSize);
rightBuffer = new Array(bufferSize);
isPlaying;

controlsOn;



Pocket Electronic Symphony #1

function initAudio() {
if (typeof aCtx !== ‘undefined’) {
if (/iPhone|iPad|iPod/i.test(
>>navigator.userAgent)) {

var el = document.getElementById(
>>‘overlayStartup’);
el.style.display = ‘block’;

} else {

}

jsProcessor = aCtx.createScriptProcessor
>>(bufferSize, 0, 2);
jsProcessor.onaudioprocess = copyBuffer;

gainNode = aCtx.createGain();
jsProcessor.connect(gainNode);
gainNode.connect(aCtx.destination);
gainNode.gain.setTargetAtTime(

>>0, aCtx.currentTime, 0.015);

document.getElementById(‘guiBtn’).
>»>addEventListener(

>>‘click’, toggleControls);
document.getElementById(‘playBtn’).
>»addEventListener(‘click’, startStop);
isPlaying = false;

controlsOn = true;

} else {

alert(“Sorry. Audio context is

13

not defined”);



Pocket Electronic Symphony #1

/* startStop toggles play and mute state of audio
playback =/

/* 0On the mobile phone, the performer sees one of
two things: 1) the control interface, or 2) the help
screen. Function toggleControls switches between the

two and rearranges the details on the visual controls
to reflect this */

15

function startStop() {

pBtn = document.getElementById(‘playBtn’);

if (isPlaying == true) {
isPlaying = false;
pBtn.innerHTML = ‘> play’;
gainNode.gain.setTargetAtTime(
>>0, aCtx.currentTime, 0.015);

} else {
isPlaying = true;
pBtn.innerHTML = ‘x mute’;
gainNode.gain.setTargetAtTime(
»>>1.0, aCtx.currentTime, 0.015);

function toggleControls() {
var instrEl = document.
>>getElementById(‘instrument’);
var infoEl = document.getElementById(‘info’);
var gBtn = document.getElementById(‘guiBtn’);
var pBtn = document.getElementById(‘playBtn’);
var headerEl = document.getElementById(‘header’);

if (controlsOn == true) {
controlsOn = false;
gBtn.innerHTML = ‘controls’;
instrEl.style.display = ‘none’;
infoEl.style.display = ‘block’;
gBtn.classlList.add(‘lightBg’);
pBtn.classlList.add(‘lightBg’);
headerEl.classList.add(‘lightBg’);
} else {
controlsOn = true;



Pocket Electronic Symphony #1

/* As stated above, the manner of sound generation
consists in calculating the entire sound wave frame
by frame and sending it to the sound card in a memory
buffer at regular intervals. Calculation of one slice
of the waveform (which is 16384 frames long, as shown
above, in constant bufferSize) happens inside the
function fillBuffer.

In addition, we use double buffering in order to
optimise speed. The moment the sound card calls the
callback function, the value of sound buffer is
obtained by copying from another buffer, and then,
while the soundcard is playing the current slice of
the waveform, we construct the sound snippet (with
the function fillBuffer) inside this second buffer,
which will be copied to the sound card on the next
call to callback function copyBuffer. And the same is
done in every cycle */

gBtn.innerHTML = ‘about’;
instrEl.style.display = ‘block’;
infoEl.style.display = ‘none’;
gBtn.classList.remove(‘lightBg’);
pBtn.classList.remove(‘lightBg’);

headerkEl.classList.remove(‘lightBg’);

window.onload = initAudio();

function copyBuffer(event) {
var leftChannel = event.outputBuffer.
>>getChannelData(0);
var rightChannel = event.outputBuffer.
>>getChannelData(1);
var n = leftChannel.length;

for (var j = 0; j <n; j++) {
leftChannel[j] = leftBuffer[j1;
rightChannel[j] = rightBuffer[j1;

3

setTimeout(fillBuffer, 3);



Pocket Electronic Symphony #1

/* t is the frame count for the current slice of the
waveform. j is a counter used in various occasions.
aa and bb are, respectively, cumulative amplitude

on the left and right speaker; in other words final
values for each frame will be contained in these
variables before being placed in corresponding place
in the memory buffer which will later be copied to
the soundcard =/

/* Do the following until the buffer is filled */

/% Check that we are on the limit of the basic
interval T when some events may happen. Update ST and
SST according to the intervals TT as stated above.
Take into account only those TT intervals where
corresponding bit in part variable is 1 */

/* In this section we handle each of the individual
events. The events are the following:

1. Recreate the cluster with random gaps between
notes.

2. Recreate half of the cluster with no gaps between
notes (in unison)

function fi

var t =
var j =

var aa =
var bb

while (t
if (i

(i

va

fo

if

if

19

11Buffer() {

< bufferSize) {

% T =01 (1 +1)%T==0 ||
+2)%T==0 1] (1i+3)%T==0){
r p = part;

r (k = 0; k < STATES; k++) {

TTCk] = Math.floor(TT[k]);

if (p%2==1288& tx % TT[k] == 0) {
STLk] = 1;
SSTLk] = !SSTCkI;

} else
ST[k] = 0;

p >>=1;

(ST[O] == 1) {

var B = next() / 31 % 300;
f[0] = B + next() / 77 % 9;
for (j =1; j <D; j++)
f[j] = f[J-11 + next() / 441 % 9 + A;

(ST[1] == 1) {

var B = next() / 31 % 300;

f[0] =B + next() / 77 % 9;

for (j =1; j <D/ 2; j++)
fj1="f[j -1



Pocket Electronic Symphony #1

3. Recreate the cluster with smallest gaps between
notes.

4., Reset the maximum and minimum time interval for
Events. Reset time intervals for events to random
values in between. Change the amount of pitch changes
that go in the same direction.

5. Reset time intervals for events either to maximum
and minimum alternately or to the mean.

6. Increase and decrease all time intervals towards
maximum or minimum respectively on successive
occasions. Change the amount of pitch changes in the
same direction.

if

if

if

if

21

(ST[2] == 1) {

var B = next() / 31 % 300;

f[0] =B + next() / 77 % 9;

for (j =1; j <D; j++)
f[jl=f[j-11+1;

(ST[3]1 == 1) {
TTMIN = 50 + next() / 77 % 500;
TTMAX = TTMIN + next() / 77 % 500;
for (j = 0; j < STATES; j++)
TT[j1 = TTMIN + next() / 103 % (
>>TTMAX - TTMIN);
slide = -3 + next() / 55 % 6;

(ST[4]1 == 1) {
var ChooseMean = (
>>next() / 335 % 10 > 4 ? true : false);
for (j = 0; j < STATES; j++) {
if (ChooseMean)
TTC[j1 = (TTMIN + TTMAX) / 2;
else
TT[j] = j%2 == 0 ? TTIMIN : TTMAX;

(STE51 == 1) {
for (j = 0; j < STATES; j++) {
if (IncreaseTime == true) {
TTLj] = Math.floor(TT[j] * 1.2);
if (TTL3] > 10 * TTMAX)
TT[j1 = TTMIN;
i
else {
TTLj] = Math.floor(TT[j] * 0.8);
if (TTCj] < 2)



Pocket Electronic Symphony #1

7. Increase or decrease cluster density. Bounce back
a little if more than maximum allowed

or less than minimum allowed. Increase and decrease
pitches of individual cluster components using the
separate amounts of change for the change in the
same direction and in opposite directions.

8. Increase cluster density. Reset to a small value
if it becomes greater than the maximum allowed

9. Decrease cluster density. Reset to a large value
if it becomes smaller than the minimum allowed.

10. Increase or decrease volume level. Bounce back a

little if it becomes more than the maximum allowed
or less than the minimum allowed. Change the amount
of pitch changes that go in the opposite directions.

if

if

if

if

TT[j1 = TTMAX;

}
slide = -3 + next() / 55 % 6;

(SSTL6] == 1) {
var decisionl = next() / 33 % D;
var decision2 = next() / 33 % D;
var decision3 = next() / 33 % D;
f[decision1] += A;
f[decision2] -= A;
fldecision3] += slide;
D += (-3 + next() / 114 % 7);
if (D <= 0)
D=5+ next() /111 % 7;
if (D > DMAX)
D /= 2;

(SSTL71 == 1) {
D += next() / 114 % 7;
if (D > DMAX) D = 3;

(SSTL8] == 1) {
D -=next() / 114 % 7;
if (D <= 0)
D = DMAX - next() /7 111 % 7;

(SSTL9] == 1) {
Vo+= (=3 + next() / 112 % 7);
if (V <= 1limit[0])
V = 1imit[@] + next() / 111 %
if (v > limit[1])
vV /=1.3;
V = Math.floor(V);

23

700;



Pocket Electronic Symphony #1

11. Change the volume limits stepwise.

12. Change the volume level to one of volume limits.

13. Apply a saw-like envelope to a random percentage
of voices.

14. Apply a flat envelope to all the voices.

15. Apply a saw-like envelope to all the voices x/

A =

-4 + next() / 131 % 9;

if (STL10] == 1) {
if (limit[0] <= 18000

}

else {

limit[1] > 60000) {

1limit[0] = 40000 + 80 * (
>>next() / 33 % 100);
limit[1] = 50000 + 80 * (
>>next() / 33 % 100);

limit[0] *= 0.675; limit[1] *= 0.7;
limit[@] = Math.floor(limit[@]);
limit[1] = Math.floor(limit[1]);

if (SSTL11] == 1) {
if (next() / 333 % 10 > 5)

els

V =

e

V =

limit[1];

limit[0];

if (STL12] == 1) {

Saw

3

next() / 543 % 10;

if (ST[13]1 == 1) {

Saw

}

0;

if (ST[14] == 1) {
Saw =

b

tx++;

10;

25



Pocket Electronic Symphony #1

/* We construct the cluster. aa contains the left
part, bb the right part in the stereo sound picture,
as stated above. Use Saw variable to determine if
saw-like envelope is to be applied to any of the
voices x/

27

aa
bb

0;
0;

while (D >= DMAX)
D /= 2;

if (D <= 0)
D = 3;

var SawMade = false;
if (Saw == 0 || Saw == 10)
SawMade = true;

for (j =0; j <D; j*++) {

f[j1 = Math.floor(f[j1);

v[jl += f[jl;

if (v[jl > V)
v[jl = -V;

if (3 % 2)
aa += v[j];

else
bb += v[jI;

if (3 >D * Saw / 10 && !SawMade) {
aa *x= ((TTLO] - (tx % TT[0])) / TT[OI);
bb x= ((TT[O] - (tx % TT[@1)) / TT[RI1);
SawMade = true;

if (Saw == 10) {
aa *= ((TT[O] - (tx % TTL0])) / TTL0]);
bb *= ((TT[0] - (tx % TT[01)) / TT[0I);



Pocket Electronic Symphony #1

// End of Code comments

D =

</script>

29

leftBuffer[t] = aa / 32768;

i+=2;

T = Math.floor(T);

if A %T=01]] (i+1)%T ==0) continue;
rightBuffer[t] = bb / 32768;

i+= 2;

t++;

Math.floor(D);



Pocket Electronic Symphony is a smartphone symphony
for a solo performer. The symphony is written as sound
generating software which acts both as the score and the
musical instrument. Using this software on their mobile
phone, the performer changes the parameters of the
sound generation process, navigates the successions of
massive chords of synthesized sound and builds towering
climaxes and suspenseful calm sections.

The work tries to create a new kind of symphonic
sound for the mobile age and to find new space for
passionate, dramatic and grand musical expression.



Pocket Electronic Symphony #1 by Andreja Andric
published on § DobbeltDagger 2018

ISBN 978-87-970443-0-8
https://dobbeltdagger.net

Original concept and coding by Andreja Andric ‘17
Design and user experience coding by Anders Visti ‘18

The publication is released in the context of
DIEM Elektro concert Pocket Electronic Symphony
Feburary 22, ‘18 in Musikhuset Aarhus, Denmark.

Thanks go to wonderful Aarhus and Berlin musicians and artists
who have expressed encouragement, appreciation and support:

Eli Guonason, Jakob Bangse, Martin Lau, Olga Szymula, Kasper
Lauritzen, Seren Krag, Jens T. Bertelsen, Merlyn Perez-Silva,
Joachim D. S. W6lm and many others. Special thank you to Anders
Visti for his generous effort on making this publication possible.

Licensed under a CC BY-SA 4.0 International License.



Recreate the cluster with random gaps between
notes.

Recreate half of the cluster with no gaps
between notes (in unison)

Recreate the cluster with smallest gaps between
notes.

Reset the maximum and minimum time interval

for events. Reset time intervals for events to
random values in between. Change the amount of
pitch changes that go in the same direction.
Reset time intervals for events either to
maximum and minimum alternately or to the mean.
Increase and decrease all time intervals towards
maximum or minimum respectively on successive
occasions. Change the amount of pitch changes
that go in the same direction.

Increase or decrease cluster density. Bounce
back a little if more than maximum allowed or
less than minimum allowed. Increase and decrease
pitches of individual cluster components using
the separate amounts of change for the change in
the same direction and in opposite directions.
Increase cluster density. Reset to a small

value if it becomes greater than the maximum
allowed.

Decrease cluster density. Reset to a large

value if it becomes smaller than the minimum
allowed.

. Increase or decrease volume level. Bounce back

a little if it becomes greater than the maximum
allowed or less than the minimum allowed.

Change the amount of pitch changes that go in
the opposite directions.

. Change the volume limits stepwise.

. Change the volume level to one of the volume
limits.

. Apply a saw-like envelope to a random percentage
of voices.

. Apply a flat envelope to all the voices.

. Apply a saw-like envelope to all the voices.

CC BY-SA 4.0

O
“;
(<]
1
(32]
~
~
(=]
N
T
N
“;
(-
N
(=)}
=
-2
(7]
L |

¥ DobbeltDagger 2018

Andreja Andric




