
FR
EQ
UE
NC
Y

TI
ME

DE
NS
IT
Y

VO
LU
ME

EN
VE
LO
PE

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

POCKET ELECTRONIC SYMPHONY #1

Performing score,
JavaScript source code

& documentation

Pocket Electronic Symphony #1
Andreja Andric

for a solo performer with smartphone

‡

Pocket Electronic Symphony #1

// Code Comments

 /* This script consists of a list of variables and
of program code. The list of variables starts here.

The three variables and the function next() form
the linear congruent random number generator that
the program uses to make micro-decisions while it

generates the sound file */

 /* During the development of the sound, certain
changes take place, but not at every byte,

 because that would be too fast to follow. T is the
value of a basic time interval

 (measured in bytes of the sound flow) in which
mostly any change can happen. T equals

 882 bytes, which equals 1/400 s at the rate of 44100
frames per second per stereo channel */

 /* D is the current sound density, or how many
individual notes the cluster currently

 contains. V indicates volume of each individual
sound in the current cluster, measured

 in units of scale that constitute 16-bit sound, in
other words, in units inside the interval

 between -32768 and 32767 */

 /* Each event has its toggle that turns it on and
off, as explained above.

 Each one has also its own timer and time interval
measured in units of T above, in which it may

1

<script>

 var a = 2300446;
 var b = 1531103;
 var c = 2309401;

 function next() {
 a = (a * b % Number.MAX_SAFE_INTEGER + c) %
	 	 →→Number.MAX_SAFE_INTEGER;
 if (a < 0) a = -a; return a;
 }

 var T = 882;

 var D = 11;

 var V = 1888;

 var STATES = 15;

Pocket Electronic Symphony #1

appear. STATES is the overall number of toggles, and
corresponing events and time intervals, which is

constant and equals 15.
 i is the counter of bytes in the sound signal (the

sound is 16bit stereo 44100frames/s).
tx is the counter of time expressed in time measured

in intervals of T (1/400s) */

 /* TTMIN and TTMAX respectively stand for minimum and
maximum values between which the 15 intervals TT[]

(explained below) will always find themselves. These
maximum and minimum time values are not constant but

change when Toggle 4 is active.
TT[] contains 15 periods (counting in counts of T’s

above) in which other changes take place, as already
explained.

 ST[] contains 15 states that change according to the
TT time intervals and which, when set to 1, indicate
that the corresponding event will take place. These

states trigger changes to the sound flow which happen
at intervals, as ST is 1 only during one sample.

 SST[] contains 15 states that keep the value of 1
or 0 during the whole interval. These states trigger

continuous kind of change which happen at every
frame, while these states are at value 1.

 Slide is the amount of gradual pitch shift of a
cluster (the change in pitch that goes in a single

direction).
limit[] contains highest and lowest limits for V (see

the previous set of cluster generation variables).
 A contains smallest interval that participates in

building a cluster and at the same time the amount of
random change in pitch that go in opposite directions.

3

 var i = 0;

 var tx = 0;

 var TTMIN = 100;
 var TTMAX = 200;
 var TT = [];
 for (j = 0; j < STATES; j++)
 TT[j] = TTMIN + next() / 103 % (TTMAX - TTMIN);

 var ST = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0];

 var SST = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0];

 var slide = 0;

 var limit = [24000, 30000];

 var A = 1;

Pocket Electronic Symphony #1

 DMAX states maximum cluster density (set to 60).
 Part is a variable whose binary representation

contains the state of all the toggles and therefore
is used to control the flow of the composition.

Only those changes where corresponding bit in Part
variable is 1 will happen, and, since there are 15

 toggles, only lowest 15 bits count. For instance if
Part = 129, (000000010000001 in binary representation)

then only changes of type 0 and 7, corresponding to
toggles 1 and 8, will take place.

 IncreaseTime is an additional toggle that decides
whether time intervals are increased or decreased

all together on successive pushes of Toggle 6. The
corresponding toggle changes to light blue or dark
blue to indicate the difference. All other toggles
change to dark blue only when active, and back to

standard grey color when inactive. Toggle 6 is the
only 3-state toggle */

5

 var DMAX = 60;
 var part = 0;

 var IncreaseTime = true;

Pocket Electronic Symphony #1

/* In this section we assign a listener function to
each toggle, so that variable part, described above,

is modified accordingly with each press of each
button. As mentioned above, Toggle 6 is the only

3-state toggle, while all the others are two state
togles.

 All toggles change color between dark blue (active)
and light grey (inactive), except the toggle 6 which

also has a third color (light blue) */

7

 var btnToggle = [0,0,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0];

 for(cc=0;cc<STATES;cc++) {
 btnToggle[cc]=document.
	 	 →→getElementById(‘btnToggle’+cc);
 let clist = btnToggle[cc].classList;

 if (cc == 5) {
 (function(index) {
 btnToggle[index].addEventListener(
	 	 	 	 →→“click”,	function()	{
 part = part ^ 32;
 if (part & 32) {
 IncreaseTime = !IncreaseTime;
 if (IncreaseTime) {
 clist.
	 	 	 	 	 	 	 →→remove(‘darkblueButtonStyle’);
																					clist.add(‘blueButtonStyle’);
 } else {
																					clist.remove(‘blueButtonStyle’);
																					clist.add(‘darkblueButtonStyle’);
 }
 } else {
																		clist.remove(‘blueButtonStyle’);
																		clist.remove(‘darkblueButtonStyle’);
 }
 resetChangeTriggers();
 }, false);
 })(cc);
 } else {
 (function(index) {
 btnToggle[index].addEventListener(
	 	 	 	 →→“click”,	function()	{
 var expon;

Pocket Electronic Symphony #1

 /* Variables v[] and f[] define the individual
components of the sound cluster. f[]’s contain current

increments of amplitudes of individual components.
The faster an amplitude grows the more often it

completes a cycle of changes between the highest
and lowest amplitude limits, and therefore it is a

measure of pitch. v[]’s are the current values of the
amplitudes of individual components. The scale and

effective pitch actually depends also on V, because
the smaller the V, the faster an amplitude completes
its cycle, so in a way, the triad f[] and V define a
bidimensional musical scale in which all the voices

of the cluster move.

9

 (index == 0) ? expon = 1 : expon =
	 	 	 	 	 →→Math.pow(2,	index);
 part = part ^ expon;
 if (part & expon)
																		clist.add(‘toggleButtonStyle’);
 else
																		clist.remove(‘toggleButtonStyle’);
 resetChangeTriggers();
 }, false);
 })(cc);
 }
 }

 function resetChangeTriggers() {
 for (j = 0; j < STATES; j++) {
 ST[j] = 0; SST[j] = 0;
 }
 }

 var f = [];
 var v = [];
 f[0] = 3 + next() / 77 % 9;
 for (j = 1; j < DMAX; j++)
 f[j] = f[j - 1] + A;
 for (j = 0; j < DMAX; j++)
 v[j] = 0;

Pocket Electronic Symphony #1

 Saw indicates the amount of voices with saw-like
envelope. Saw=1 indicates that 1/10th of all voices
in the cluster will have saw-like envelope. Saw=5

indicates that 1/2 have saw-like envelope whereas
the others have flat envelope. Saw=10 indicates that
all voices have saw-like envelope. Saw=0 indicates

that all voices have flate envelope. Regulating the
value of Saw variable is effected by means of Toggles

13, 14 and 15 */

/* Variables aCtx, jsProcessor and gainNode,
and function createAudioContext() are used for

communicating with the sound card via Web Audio API.
 bufferSize is a constant that indicates the amount
of data the sound card will receive at every cycle.
leftBuffer and rightBuffer are memory buffers where
the sound data will be stored for the sound card to

play in each cycle. isPlaying and controlsOn are both
toggles that are either true or false. isPlaying is

used to control audio playback and controlsOn is used
to switch between control interface and help screen.
 Function initAudio() makes necessary initializations

for real time audio and sets copyBuffer() as the
callback function that the sound card will call at

regular intervals to fetch the data inside leftBuffer
and rightBuffer.

 initAudio() will be the first thing to do when the
page loads */

11

			var	Saw	=	0;

 function createAudioContext() {
						var	contextClass	=	(window.AudioContext	||
									window.webkitAudioContext	||
									window.mozAudioContext	||
									window.oAudioContext);
 if (contextClass) {
									return	new	contextClass();
 } else {
									alert(“Sorry.	WebAudio	API	not	supported.	Try		
	 	 	 →→using	Google	Chrome	or	Safari	browser.”);
 return null;
 }
 }

 var aCtx = createAudioContext();
			var	jsProcessor	=	0;
 var gainNode;
			var	bufferSize	=	16384;
			var	leftBuffer	=	new	Array(bufferSize);
			var	rightBuffer	=	new	Array(bufferSize);
			var	isPlaying;
 var controlsOn;

Pocket Electronic Symphony #1 13

 function initAudio() {
						if	(typeof	aCtx	!==	‘undefined’)	{
									if	(/iPhone|iPad|iPod/i.test(
	 	 	 →→navigator.userAgent))	{
												var	el	=	document.getElementById(
	 	 	 	 →→‘overlayStartup’);											
												el.style.display	=	‘block’;
 } else {
												jsProcessor	=	aCtx.createScriptProcessor	 	
	 	 	 	 →→(bufferSize,	0,	2);
												jsProcessor.onaudioprocess	=	copyBuffer;

 gainNode = aCtx.createGain();
												jsProcessor.connect(gainNode);
 gainNode.connect(aCtx.destination);
 gainNode.gain.setTargetAtTime(
	 	 	 	 →→0,	aCtx.currentTime,	0.015);

												document.getElementById(‘guiBtn’).	 	 	 	
	 	 	 	 →→addEventListener(
	 	 	 	 →→‘click’,	toggleControls);
												document.getElementById(‘playBtn’).		 	 	
	 	 	 	 →→addEventListener(‘click’,	startStop);
												isPlaying	=	false;
 controlsOn = true;
 }
 } else {
									alert(“Sorry.	Audio	context	is	not	defined”);
 }
 }

Pocket Electronic Symphony #1

 /* startStop toggles play and mute state of audio
playback */

 /* On the mobile phone, the performer sees one of
two things: 1) the control interface, or 2) the help
screen. Function toggleControls switches between the
two and rearranges the details on the visual controls

to reflect this */

15

 function startStop() {
						pBtn	=	document.getElementById(‘playBtn’);
						if	(isPlaying	==	true)	{
									isPlaying	=	false;
									pBtn.innerHTML	=	‘>	play’;
 gainNode.gain.setTargetAtTime(
	 	 	 →→0,	aCtx.currentTime,	0.015);
 } else {
									isPlaying	=	true;
									pBtn.innerHTML	=	‘x	mute’;
 gainNode.gain.setTargetAtTime(
	 	 	 →→1.0,	aCtx.currentTime,	0.015);
 }
 }

 function toggleControls() {
 var instrEl = document.
	 	 →→getElementById(‘instrument’);
						var	infoEl	=	document.getElementById(‘info’);
						var	gBtn	=	document.getElementById(‘guiBtn’);
						var	pBtn	=	document.getElementById(‘playBtn’);
						var	headerEl	=	document.getElementById(‘header’);

 if (controlsOn == true) {
 controlsOn = false;
									gBtn.innerHTML	=	‘controls’;
									instrEl.style.display	=	‘none’;
									infoEl.style.display	=	‘block’;
									gBtn.classList.add(‘lightBg’);
									pBtn.classList.add(‘lightBg’);
									headerEl.classList.add(‘lightBg’);
 } else {
 controlsOn = true;

Pocket Electronic Symphony #1

 /* As stated above, the manner of sound generation
consists in calculating the entire sound wave frame

by frame and sending it to the sound card in a memory
buffer at regular intervals. Calculation of one slice
of the waveform (which is 16384 frames long, as shown

 above, in constant bufferSize) happens inside the
function fillBuffer.

 In addition, we use double buffering in order to
optimise speed. The moment the sound card calls the

callback function, the value of sound buffer is
obtained by copying from another buffer, and then,

while the soundcard is playing the current slice of
the waveform, we construct the sound snippet (with

the function fillBuffer) inside this second buffer,
which will be copied to the sound card on the next

call to callback function copyBuffer. And the same is
done in every cycle */

17

									gBtn.innerHTML	=	‘about’;
									instrEl.style.display	=	‘block’;
									infoEl.style.display	=	‘none’;
									gBtn.classList.remove(‘lightBg’);
									pBtn.classList.remove(‘lightBg’);
									headerEl.classList.remove(‘lightBg’);
 }
 }

			window.onload	=	initAudio();

			function	copyBuffer(event)	{
						var	leftChannel	=	event.outputBuffer.
	 	 →→getChannelData(0);
						var	rightChannel	=	event.outputBuffer.
	 	 →→getChannelData(1);
 var n = leftChannel.length;

 for (var j = 0; j < n; j++) {
									leftChannel[j]	=	leftBuffer[j];
									rightChannel[j]	=	rightBuffer[j];
 }
						setTimeout(fillBuffer,	3);
 }

Pocket Electronic Symphony #1

 /* t is the frame count for the current slice of the
waveform. j is a counter used in various occasions.
aa and bb are, respectively, cumulative amplitude

on the left and right speaker; in other words final
values for each frame will be contained in these

variables before being placed in corresponding place
in the memory buffer which will later be copied to

the soundcard */

 /* Do the following until the buffer is filled */
 /* Check that we are on the limit of the basic

interval T when some events may happen. Update ST and
SST according to the intervals TT as stated above.

Take into account only those TT intervals where
corresponding bit in part variable is 1 */

 /* In this section we handle each of the individual
events. The events are the following:

 1. Recreate the cluster with random gaps between
notes.

 2. Recreate half of the cluster with no gaps between
notes (in unison)

19

			function	fillBuffer()	{

 var t = 0;
 var j = 0;

 var aa = 0;
 var bb = 0;

						while	(t	<	bufferSize)	{
									if	(i	%	T	==	0	||	(i	+	1)	%	T	==	0	||
	 	 	 	 (i	+	2)	%	T	==	0	||	(i	+	3)	%	T	==	0)	{
 var p = part;
												for	(k	=	0;	k	<	STATES;	k++)	{
															TT[k]	=	Math.floor(TT[k]);
															if	(p	%	2	==	1	&&	tx	%	TT[k]	==	0)	{
																		ST[k]	=	1;
																		SST[k]	=	!SST[k];
 } else
																		ST[k]	=	0;
 p >>= 1;
 }
 if (ST[0] == 1) {
															var	B	=	next()	/	31	%	300;
															f[0]	=	B	+	next()	/	77	%	9;
 for (j = 1; j < D; j++)
 f[j] = f[j-1] + next() / 441 % 9 + A;
 }
 if (ST[1] == 1) {
															var	B	=	next()	/	31	%	300;
															f[0]	=	B	+	next()	/	77	%	9;
 for (j = 1; j < D / 2; j++)
 f[j] = f[j - 1];
 }

Pocket Electronic Symphony #1

 3. Recreate the cluster with smallest gaps between
notes.

 4. Reset the maximum and minimum time interval for
Events. Reset time intervals for events to random

values in between. Change the amount of pitch changes
that go in the same direction.

 5. Reset time intervals for events either to maximum
and minimum alternately or to the mean.

 6. Increase and decrease all time intervals towards
maximum or minimum respectively on successive

 occasions. Change the amount of pitch changes in the
same direction.

21

 if (ST[2] == 1) {
															var	B	=	next()	/	31	%	300;
															f[0]	=	B	+	next()	/	77	%	9;
 for (j = 1; j < D; j++)
 f[j] = f[j - 1] + 1;
 }
 if (ST[3] == 1) {
 TTMIN = 50 + next() / 77 % 500;
 TTMAX = TTMIN + next() / 77 % 500;
 for (j = 0; j < STATES; j++)
 TT[j] = TTMIN + next() / 103 % (
	 	 	 	 	 	 →→TTMAX	-	TTMIN);
 slide = -3 + next() / 55 % 6;
 }
 if (ST[4] == 1) {
 var ChooseMean = (
	 	 	 	 	 →→next()	/	335	%	10	>	4	?	true	:	false);
 for (j = 0; j < STATES; j++) {
 if (ChooseMean)
 TT[j] = (TTMIN + TTMAX) / 2;
 else
 TT[j] = j%2 == 0 ? TTMIN : TTMAX;
 }
 }
 if (ST[5] == 1) {
 for (j = 0; j < STATES; j++) {
 if (IncreaseTime == true) {
 TT[j] = Math.floor(TT[j] * 1.2);
 if (TT[j] > 10 * TTMAX)
 TT[j] = TTMIN;
 }
 else {
 TT[j] = Math.floor(TT[j] * 0.8);
 if (TT[j] < 2)

Pocket Electronic Symphony #1

 7. Increase or decrease cluster density. Bounce back
a little if more than maximum allowed

 or less than minimum allowed. Increase and decrease
pitches of individual cluster components using the
 separate amounts of change for the change in the

same direction and in opposite directions.

 8. Increase cluster density. Reset to a small value
if it becomes greater than the maximum allowed

 9. Decrease cluster density. Reset to a large value
if it becomes smaller than the minimum allowed.

 10. Increase or decrease volume level. Bounce back a
little if it becomes more than the maximum allowed

 or less than the minimum allowed. Change the amount
of pitch changes that go in the opposite directions.

23

 TT[j] = TTMAX;
 }
 }
 slide = -3 + next() / 55 % 6;
 }
 if (SST[6] == 1) {
 var decision1 = next() / 33 % D;
 var decision2 = next() / 33 % D;
 var decision3 = next() / 33 % D;
 f[decision1] += A;
 f[decision2] -= A;
 f[decision3] += slide;
 D += (-3 + next() / 114 % 7);
 if (D <= 0)
 D = 5 + next() / 111 % 7;
 if (D > DMAX)
 D /= 2;
 }
 if (SST[7] == 1) {
 D += next() / 114 % 7;
 if (D > DMAX) D = 3;
 }
 if (SST[8] == 1) {
 D -= next() / 114 % 7;
 if (D <= 0)
 D = DMAX - next() / 111 % 7;
 }
 if (SST[9] == 1) {
 V += (-3 + next() / 112 % 7);
 if (V <= limit[0])
 V = limit[0] + next() / 111 % 700;
 if (V > limit[1])
 V /= 1.3;
 V = Math.floor(V);

Pocket Electronic Symphony #1

 11. Change the volume limits stepwise.

 12. Change the volume level to one of volume limits.

 13. Apply a saw-like envelope to a random percentage
of voices.

 14. Apply a flat envelope to all the voices.

 15. Apply a saw-like envelope to all the voices */

25

 A = -4 + next() / 131 % 9;
 }
 if (ST[10] == 1) {
 if (limit[0] <= 18000
	 	 	 	 	 	 ||	limit[1]	>	60000)	{
 limit[0] = 40000 + 80 * (
	 	 	 	 	 	 →→next()	/	33	%	100);
 limit[1] = 50000 + 80 * (
	 	 	 	 	 	 →→next()	/	33	%	100);
 }
 else {
 limit[0] *= 0.675; limit[1] *= 0.7;
 limit[0] = Math.floor(limit[0]);
 limit[1] = Math.floor(limit[1]);
 }
 }
 if (SST[11] == 1) {
 if (next() / 333 % 10 > 5)
 V = limit[1];
 else
 V = limit[0];
 }
 if (ST[12] == 1) {
															Saw	=	next()	/	543	%	10;
 }
 if (ST[13] == 1) {
															Saw	=	0;
 }
 if (ST[14] == 1) {
															Saw	=	10;
 }
 tx++;
 }

Pocket Electronic Symphony #1

 /* We construct the cluster. aa contains the left
part, bb the right part in the stereo sound picture,

as stated above. Use Saw variable to determine if
saw-like envelope is to be applied to any of the

voices */

27

 aa = 0;
 bb = 0;

									while	(D	>=	DMAX)
 D /= 2;
 if (D <= 0)
 D = 3;

									var	SawMade	=	false;
									if	(Saw	==	0	||	Saw	==	10)
												SawMade	=	true;

 for (j = 0; j < D; j++) {
 f[j] = Math.floor(f[j]);
 v[j] += f[j];
 if (v[j] > V)
 v[j] = -V;
 if (j % 2)
 aa += v[j];
 else
 bb += v[j];
												if	(j	>	D	*	Saw	/	10	&&	!SawMade)	{
 aa *= ((TT[0] - (tx % TT[0])) / TT[0]);
 bb *= ((TT[0] - (tx % TT[0])) / TT[0]);
															SawMade	=	true;
 }
 }

									if	(Saw	==	10)	{
 aa *= ((TT[0] - (tx % TT[0])) / TT[0]);
 bb *= ((TT[0] - (tx % TT[0])) / TT[0]);
 }

Pocket Electronic Symphony #1

// End of Code comments

29

									leftBuffer[t]	=	aa	/	32768;
 i += 2;
 T = Math.floor(T);
									if	(i	%	T	==	0	||	(i	+	1)	%	T	==	0)	continue;
									rightBuffer[t]	=	bb	/	32768;
 i += 2;
 t++;

 }

 D = Math.floor(D);

 }

</script>

Pocket Electronic Symphony is a smartphone symphony
for a solo performer. The symphony is written as sound
generating software which acts both as the score and the
musical instrument. Using this software on their mobile
phone, the performer changes the parameters of the
sound generation process, navigates the successions of
massive chords of synthesized sound and builds towering
climaxes and suspenseful calm sections.
 The work tries to create a new kind of symphonic
sound for the mobile age and to find new space for
passionate, dramatic and grand musical expression.

Pocket Electronic Symphony #1 by Andreja Andric
published on ‡ DobbeltDagger 2018
ISBN 978-87-970443-0-8
https://dobbeltdagger.net

Original concept and coding by Andreja Andric ‘17
Design and user experience coding by Anders Visti ‘18

The publication is released in the context of
DIEM Elektro concert Pocket Electronic Symphony
Feburary 22, ‘18 in Musikhuset Aarhus, Denmark.

Thanks go to wonderful Aarhus and Berlin musicians and artists
who have expressed encouragement, appreciation and support:
Eli Guðnason, Jakob Bangsø, Martin Lau, Olga Szymula, Kasper
Lauritzen, Søren Krag, Jens T. Bertelsen, Merlyn Perez-Silva,
Joachim D. S. Wölm and many others. Special thank you to Anders
Visti for his generous effort on making this publication possible.

Licensed under a CC BY-SA 4.0 International License.

POCKET ELECTRONIC SYMPHONY #1

1. Recreate the cluster with random gaps between
notes.

2. Recreate half of the cluster with no gaps
between notes (in unison)

3. Recreate the cluster with smallest gaps between
notes.

4. Reset the maximum and minimum time interval
for events. Reset time intervals for events to
random values in between. Change the amount of
pitch changes that go in the same direction.

5. Reset time intervals for events either to
maximum and minimum alternately or to the mean.

6. Increase and decrease all time intervals towards
maximum or minimum respectively on successive
occasions. Change the amount of pitch changes
that go in the same direction.

7. Increase or decrease cluster density. Bounce
back a little if more than maximum allowed or
less than minimum allowed. Increase and decrease
pitches of individual cluster components using
the separate amounts of change for the change in
the same direction and in opposite directions.

8. Increase cluster density. Reset to a small
value if it becomes greater than the maximum
allowed.

9. Decrease cluster density. Reset to a large
value if it becomes smaller than the minimum
allowed.

10. Increase or decrease volume level. Bounce back
a little if it becomes greater than the maximum
allowed or less than the minimum allowed.
Change the amount of pitch changes that go in
the opposite directions.

11. Change the volume limits stepwise.
12. Change the volume level to one of the volume

limits.
13. Apply a saw-like envelope to a random percentage

of voices.
14. Apply a flat envelope to all the voices.
15. Apply a saw-like envelope to all the voices.

An
dr
ej
a
An
dr
ic

‡
Do
bb
el
tD
ag
ge
r
20
18

IS
BN
 9
78
-8
7-
97
04
43
-0
-8
C

CC
 B
Y-
SA
 4
.0

